An investigation of the modified direction feature for cursive character recognition

نویسندگان

  • Michael Blumenstein
  • Xin Yu Liu
  • Brijesh Verma
چکیده

This paper describes and analyses the performance of a novel feature extraction technique for the recognition of segmented/cursive characters that may be used in the context of a segmentation-based handwritten word recognition system. The Modified Direction Feature (MDF) extraction technique builds upon the Direction Feature (DF) technique proposed previously that extracts direction information from the structure of character contours. This principal was extended so that the direction information is integrated with a technique for detecting transitions between background and foreground pixels in the character image. In order to improve on the DF extraction technique, a number of modifications were undertaken. With a view to describe the character contour more effectively, a re-design of the direction number determination technique was performed. Also, an additional global feature was introduced to improve the recognition accuracy for those characters that were most frequently confused with patterns of similar appearance. MDF was tested using a neural network-based classifier and compared to the DF and Transition Feature (TF) extraction techniques. MDF outperformed both DF and TF techniques using a benchmark dataset and compared favourably with the top results in the literature. A recognition accuracy of above 89% is reported on characters from the CEDAR dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Neural Confidence-based Segmentation for Cursive Handwriting Recognition

This paper proposes some directions for enhancing a neural network-based technique for automatically segmenting cursive handwriting. The technique fuses confidence values obtained from left and center character recognition outputs in addition to a Segmentation Point Validation output. Specifically, this paper describes the use of a recently proposed feature extraction technique (Modified Direct...

متن کامل

Offline Cursive Character Recognition: A state-of-the-art comparison

Recent research has demonstrated the superiority of SVM-based approaches for offline cursive character recognition. In particular, Camastra’s 2007 study showed SVM to be better than alternative LVQ and MLP approaches on the large C-Cube data set. Subsequent work has applied hierarchical vector quantization (HVQ) with temporal pooling to the same data set, improving on LVQ and MLP but still not ...

متن کامل

Segmentation-free MRF Recognition Method in Combination with P2DBMN-MQDF for Online Handwritten Cursive Word

This paper describes an online handwritten English cursive word recognition method using a segmentation-free Markov random field (MRF) model in combination with an offline recognition method which uses pseudo 2D bi-moment normalization (P2DBMN) and modified quadratic discriminant function (MQDF). It extracts feature points along the pen-tip trace from pen-down to pen-up and uses the feature poi...

متن کامل

Cursive character recognition by learning vector quantization

This paper presents a cursive character recognizer embedded in an o€-line cursive script recognition system. The recognizer is composed of two modules: the ®rst one is a feature extractor, the second one a learning vector quantizer. The selected feature set was compared to Zernike polynomials using the same classi®er. Experiments are reported on a database of about 49,000 isolated characters.

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007